home *** CD-ROM | disk | FTP | other *** search
Python Source | 1996-07-16 | 7.3 KB | 289 lines |
- # Complex numbers
- # ---------------
-
- # This module represents complex numbers as instances of the class Complex.
- # A Complex instance z has two data attribues, z.re (the real part) and z.im
- # (the imaginary part). In fact, z.re and z.im can have any value -- all
- # arithmetic operators work regardless of the type of z.re and z.im (as long
- # as they support numerical operations).
- #
- # The following functions exist (Complex is actually a class):
- # Complex([re [,im]) -> creates a complex number from a real and an imaginary part
- # IsComplex(z) -> true iff z is a complex number (== has .re and .im attributes)
- # ToComplex(z) -> a complex number equal to z; z itself if IsComplex(z) is true
- # if z is a tuple(re, im) it will also be converted
- # PolarToComplex([r [,phi [,fullcircle]]]) ->
- # the complex number z for which r == z.radius() and phi == z.angle(fullcircle)
- # (r and phi default to 0)
- #
- # Complex numbers have the following methods:
- # z.abs() -> absolute value of z
- # z.radius() == z.abs()
- # z.angle([fullcircle]) -> angle from positive X axis; fullcircle gives units
- # z.phi([fullcircle]) == z.angle(fullcircle)
- #
- # These standard functions and unary operators accept complex arguments:
- # abs(z)
- # -z
- # +z
- # not z
- # repr(z) == `z`
- # str(z)
- # hash(z) -> a combination of hash(z.re) and hash(z.im) such that if z.im is zero
- # the result equals hash(z.re)
- # Note that hex(z) and oct(z) are not defined.
- #
- # These conversions accept complex arguments only if their imaginary part is zero:
- # int(z)
- # long(z)
- # float(z)
- #
- # The following operators accept two complex numbers, or one complex number
- # and one real number (int, long or float):
- # z1 + z2
- # z1 - z2
- # z1 * z2
- # z1 / z2
- # pow(z1, z2)
- # cmp(z1, z2)
- # Note that z1 % z2 and divmod(z1, z2) are not defined,
- # nor are shift and mask operations.
- #
- # The standard module math does not support complex numbers.
- # (I suppose it would be easy to implement a cmath module.)
- #
- # Idea:
- # add a class Polar(r, phi) and mixed-mode arithmetic which
- # chooses the most appropriate type for the result:
- # Complex for +,-,cmp
- # Polar for *,/,pow
-
-
- import types, math
-
- twopi = math.pi*2.0
- halfpi = math.pi/2.0
-
- def IsComplex(obj):
- return hasattr(obj, 're') and hasattr(obj, 'im')
-
- def ToComplex(obj):
- if IsComplex(obj):
- return obj
- elif type(obj) == types.TupleType:
- return apply(Complex, obj)
- else:
- return Complex(obj)
-
- def PolarToComplex(r = 0, phi = 0, fullcircle = twopi):
- phi = phi * (twopi / fullcircle)
- return Complex(math.cos(phi)*r, math.sin(phi)*r)
-
- def Re(obj):
- if IsComplex(obj):
- return obj.re
- else:
- return obj
-
- def Im(obj):
- if IsComplex(obj):
- return obj.im
- else:
- return obj
-
- class Complex:
-
- def __init__(self, re=0, im=0):
- if IsComplex(re):
- im = i + Complex(0, re.im)
- re = re.re
- if IsComplex(im):
- re = re - im.im
- im = im.re
- self.__dict__['re'] = re
- self.__dict__['im'] = im
-
- def __setattr__(self, name, value):
- raise TypeError, 'Complex numbers are immutable'
-
- def __hash__(self):
- if not self.im: return hash(self.re)
- mod = sys.maxint + 1L
- return int((hash(self.re) + 2L*hash(self.im) + mod) % (2L*mod) - mod)
-
- def __repr__(self):
- if not self.im:
- return 'Complex(%s)' % `self.re`
- else:
- return 'Complex(%s, %s)' % (`self.re`, `self.im`)
-
- def __str__(self):
- if not self.im:
- return `self.re`
- else:
- return 'Complex(%s, %s)' % (`self.re`, `self.im`)
-
- def __neg__(self):
- return Complex(-self.re, -self.im)
-
- def __pos__(self):
- return self
-
- def __abs__(self):
- # XXX could be done differently to avoid overflow!
- return math.sqrt(self.re*self.re + self.im*self.im)
-
- def __int__(self):
- if self.im:
- raise ValueError, "can't convert Complex with nonzero im to int"
- return int(self.re)
-
- def __long__(self):
- if self.im:
- raise ValueError, "can't convert Complex with nonzero im to long"
- return long(self.re)
-
- def __float__(self):
- if self.im:
- raise ValueError, "can't convert Complex with nonzero im to float"
- return float(self.re)
-
- def __cmp__(self, other):
- other = ToComplex(other)
- return cmp((self.re, self.im), (other.re, other.im))
-
- def __rcmp__(self, other):
- other = ToComplex(other)
- return cmp(other, self)
-
- def __nonzero__(self):
- return not (self.re == self.im == 0)
-
- abs = radius = __abs__
-
- def angle(self, fullcircle = twopi):
- return (fullcircle/twopi) * ((halfpi - math.atan2(self.re, self.im)) % twopi)
-
- phi = angle
-
- def __add__(self, other):
- other = ToComplex(other)
- return Complex(self.re + other.re, self.im + other.im)
-
- __radd__ = __add__
-
- def __sub__(self, other):
- other = ToComplex(other)
- return Complex(self.re - other.re, self.im - other.im)
-
- def __rsub__(self, other):
- other = ToComplex(other)
- return other - self
-
- def __mul__(self, other):
- other = ToComplex(other)
- return Complex(self.re*other.re - self.im*other.im,
- self.re*other.im + self.im*other.re)
-
- __rmul__ = __mul__
-
- def __div__(self, other):
- other = ToComplex(other)
- d = float(other.re*other.re + other.im*other.im)
- if not d: raise ZeroDivisionError, 'Complex division'
- return Complex((self.re*other.re + self.im*other.im) / d,
- (self.im*other.re - self.re*other.im) / d)
-
- def __rdiv__(self, other):
- other = ToComplex(other)
- return other / self
-
- def __pow__(self, n, z=None):
- if z is not None:
- raise TypeError, 'Complex does not support ternary pow()'
- if IsComplex(n):
- if n.im: raise TypeError, 'Complex to the Complex power'
- n = n.re
- r = pow(self.abs(), n)
- phi = n*self.angle()
- return Complex(math.cos(phi)*r, math.sin(phi)*r)
-
- def __rpow__(self, base):
- base = ToComplex(base)
- return pow(base, self)
-
-
- def checkop(expr, a, b, value, fuzz = 1e-6):
- import sys
- print ' ', a, 'and', b,
- try:
- result = eval(expr)
- except:
- result = sys.exc_type
- print '->', result
- if (type(result) == type('') or type(value) == type('')):
- ok = result == value
- else:
- ok = abs(result - value) <= fuzz
- if not ok:
- print '!!\t!!\t!! should be', value, 'diff', abs(result - value)
-
-
- def test():
- testsuite = {
- 'a+b': [
- (1, 10, 11),
- (1, Complex(0,10), Complex(1,10)),
- (Complex(0,10), 1, Complex(1,10)),
- (Complex(0,10), Complex(1), Complex(1,10)),
- (Complex(1), Complex(0,10), Complex(1,10)),
- ],
- 'a-b': [
- (1, 10, -9),
- (1, Complex(0,10), Complex(1,-10)),
- (Complex(0,10), 1, Complex(-1,10)),
- (Complex(0,10), Complex(1), Complex(-1,10)),
- (Complex(1), Complex(0,10), Complex(1,-10)),
- ],
- 'a*b': [
- (1, 10, 10),
- (1, Complex(0,10), Complex(0, 10)),
- (Complex(0,10), 1, Complex(0,10)),
- (Complex(0,10), Complex(1), Complex(0,10)),
- (Complex(1), Complex(0,10), Complex(0,10)),
- ],
- 'a/b': [
- (1., 10, 0.1),
- (1, Complex(0,10), Complex(0, -0.1)),
- (Complex(0, 10), 1, Complex(0, 10)),
- (Complex(0, 10), Complex(1), Complex(0, 10)),
- (Complex(1), Complex(0,10), Complex(0, -0.1)),
- ],
- 'pow(a,b)': [
- (1, 10, 1),
- (1, Complex(0,10), 'TypeError'),
- (Complex(0,10), 1, Complex(0,10)),
- (Complex(0,10), Complex(1), Complex(0,10)),
- (Complex(1), Complex(0,10), 'TypeError'),
- (2, Complex(4,0), 16),
- ],
- 'cmp(a,b)': [
- (1, 10, -1),
- (1, Complex(0,10), 1),
- (Complex(0,10), 1, -1),
- (Complex(0,10), Complex(1), -1),
- (Complex(1), Complex(0,10), 1),
- ],
- }
- exprs = testsuite.keys()
- exprs.sort()
- for expr in exprs:
- print expr + ':'
- t = (expr,)
- for item in testsuite[expr]:
- apply(checkop, t+item)
-
-
- if __name__ == '__main__':
- test()
-